Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.384
Filtrar
1.
Int J Biol Macromol ; 260(Pt 2): 129656, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253144

RESUMO

Herein, we attempted to confine copper nanoclusters (CuNCs) with alumina (Al2O3) as the matrix (Al2O3@CuNCs), which effectively circumvented the drawbacks of CuNCs (such as weak photoluminescence and low quantum yield). Al2O3@CuNCs demonstrated sensitive response to p-nitrophenol, the catalytic product of N-acetyl-ß-D-glucosaminidase (NAG) on account of the inner filter effect and dynamic quenching effect. In light of this, a novel assay was created to identify NAG, a critical indicator of diabetic nephropathy. Additionally, a portable and instrument-free sensing platform mainly consisting of a smartphone, a cuvette, a cuvette holder, a dark box and a 365 nm UV lamp was developed for the quantitative detection of NAG. The as-prepared material was also utilized in anti-counterfeiting and information encryption based on their excellent optical properties and sensitive response to the catalyzed product of NAG. This work advanced potential applications of CuNCs composites in the areas of portable, multi-mode biosensing, anti-counterfeiting and information encryption.


Assuntos
Cobre , Hexosaminidases , Microesferas
2.
Environ Microbiol ; 26(1): e16571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178319

RESUMO

Burkholderia pseudomallei is a saprophytic Gram-negative bacillus that can cause the disease melioidosis. Although B. pseudomallei is a recognised member of terrestrial soil microbiomes, little is known about its contribution to the saprophytic degradation of polysaccharides within its niche. For example, while chitin is predicted to be abundant within terrestrial soils the chitinolytic capacity of B. pseudomallei is yet to be defined. This study identifies and characterises a putative glycoside hydrolase, bpsl0500, which is expressed by B. pseudomallei K96243. Recombinant BPSL0500 was found to exhibit activity against substrate analogues and GlcNAc disaccharides relevant to chitinolytic N-acetyl-ß-d-hexosaminidases. In B. pseudomallei, bpsl0500 was found to be essential for both N-acetyl-ß-d-hexosaminidase activity and chitooligosaccharide metabolism. Furthermore, bpsl0500 was also observed to significantly affect biofilm deposition. These observations led to the identification of BPSL0500 activity against model disaccharide linkages that are present in biofilm exopolysaccharides, a feature that has not yet been described for chitinolytic enzymes. The results in this study indicate that chitinolytic N-acetyl-ß-d-hexosaminidases like bpsl0500 may facilitate biofilm disruption as well as chitin assimilation, providing dual functionality for saprophytic bacteria such as B. pseudomallei within the competitive soil microbiome.


Assuntos
Burkholderia pseudomallei , Quitosana , Melioidose , Oligossacarídeos , Humanos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Solo , Biofilmes , Quitina/metabolismo , Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo , Melioidose/microbiologia
3.
Int J Biol Macromol ; 259(Pt 1): 129063, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159710

RESUMO

In order to better utilize chitinolytic enzymes to produce high-value N-acetyl-D-glucosamine (GlcNAc) from chitinous waste, there is an urgent need to explore bi-functional chitinases with exceptional properties of temperature, pH and metal tolerance. In this study, we cloned and characterized a novel bi-functional cold-adaptive chitinase called CaChi18A from a newly isolated strain, Chitinilyticum aquatile CSC-1, in Bama longevity village of Guangxi Province, China. The activity of CaChi18A at 50 °C was 4.07 U/mg. However, it exhibited significant catalytic activity even at 5 °C. Its truncated variant CaChi18A_ΔChBDs, containing only catalytic domain, demonstrated significant activity levels, exceeding 40 %, over a temperature range of 5-60 °C and a pH range of 3 to 10. It was noteworthy that it displayed tolerance towards most metal ions at a final concentration of 0.1 mM, including Fe3+ and Cu2+ ions, retaining 122.52 ± 0.17 % and 116.42 ± 1.52 % activity, respectively. Additionally, it exhibited favorable tolerance towards organic solvents with the exception of formic acid. Interestedly, CaChi18A and CaChi18A_ΔChBDs had a low Km value towards colloidal chitin (CC), 0.94 mg mL-1 and 2.13 mg mL-1, respectively. Both enzymes exhibited chitobiosidase and N-acetyl-D-glucosaminidase activities, producing GlcNAc as the primary product when hydrolyzing CC. The high activities across a broader temperature and pH range, strong environmental adaptability, and hydrolytic properties of CaChi18A_ΔChBDs suggested that it could be a promising candidate for GlcNAc production.


Assuntos
Betaproteobacteria , Quitinases , Quitinases/química , China , Hexosaminidases , Quitina/química , Íons
4.
Ter Arkh ; 95(7): 543-547, 2023 Sep 29.
Artigo em Russo | MEDLINE | ID: mdl-38159003

RESUMO

AIM: To assess the relationship between plasma chitotiosidase (CHIT) level and mortality in hospitalized patients with COVID-19. MATERIALS AND METHODS: 347 hospitalized patients with COVID-19 were enrolled in our single-center cohort prospective observational study. On the first day of hospitalization the patients were assessed by the level of CHIT in the venosus blood to addition to default laboratory examinations. The primary endpoint was all-cause death. The survival after hospital discharge were assessed via phone calls on 90 and 180 days since inclusion to the study (NCT04752085). RESULTS: Our study included 347 patients. The first symptoms appeared in 7 days [5; 7] before hospitalization; 283 (84.3%) patients had less than 50% of the involvement of the lung tissue to the inflammation process (CT 0-2); 36 (10.4%) patients had died since the start of our investigation; 30 (83.3%) of them died during hospitalization, others -no later than 60 days; 68 (19%) people didn't answer during phone call. The survivor's activity of the enzyme in the deceased was significantly lower in compare to deceased patients (90.5 [40.2; 178.0] nmol/h/mL vs 180.0 [77.2; 393.2] nmol/h/mL; p=0.001). Survivor of the patients with a higher level of the activity of the CHIT (more than 171 nmol/h/mL) was statically significantly lower. CONCLUSION: Rising of the CHIT's activity more than 171 nmol/h/mL might be an early independent predictor of the bad prognosis of the patients, who were hospitalized with COVID-19 infection.


Assuntos
COVID-19 , Humanos , Hexosaminidases , Hospitalização , SARS-CoV-2 , Estudos Prospectivos
5.
Bioorg Chem ; 140: 106819, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666109

RESUMO

A new class of compounds inhibiting de-O-glycosylation of proteins has been identified. Highly substituted diaminocyclopentanes are impressively selective reversible non-transition state O-ß-N-acetyl-d-glucosaminidase (O-GlcNAcase) inhibitors. The ease of preparative access and remarkable biological activities provide highly viable leads for the development of anti-tau-phosphorylation agents with a view to eventually ameliorating Alzheimer's disease.


Assuntos
Doença de Alzheimer , beta-N-Acetil-Hexosaminidases , Humanos , Hexosaminidases , Glicosilação
6.
Braz J Microbiol ; 54(3): 1533-1545, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37610567

RESUMO

N-Acetyl-glucosaminidases (GlcNAcases) are exoenzymes found in a wide range of living organisms, which have gained great attention in the treatment of disorders related to diabetes, Alzheimer's, Tay-Sachs', and Sandhoff's diseases; the control of phytopathogens; and the synthesis of bioactive GlcNAc-containing products. Aiming at future industrial applications, in this study, GlcNAcase production by marine Aeromonas caviae CHZ306 was enhanced first in shake flasks in terms of medium composition and then in bench-scale stirred-tank bioreactor in terms of physicochemical conditions. Stoichiometric balance between the bioavailability of carbon and nitrogen in the formulated culture medium, as well as the use of additional carbon and nitrogen sources, played a central role in improving the bioprocess, considerably increasing the enzyme productivity. The optimal cultivation medium was composed of colloidal α-chitin, corn steep liquor, peptone A, and mineral salts, in a 5.2 C:N ratio. Optimization of pH, temperature, colloidal α-chitin concentration, and kLa conditions further increased GlcNAcase productivity. Under optimized conditions in bioreactor (i.e., 34 °C, pH 8 and kLa 55.2 h-1), GlcNAcase activity achieved 173.4 U.L-1 after 12 h of cultivation, and productivity no less than 14.45 U.L-1.h-1 corresponding to a 370-fold enhancement compared to basal conditions.


Assuntos
Aeromonas caviae , Aeromonas caviae/genética , Reatores Biológicos , Carbono , Quitina , Hexosaminidases , Nitrogênio
7.
Biochemistry ; 62(16): 2358-2362, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37498728

RESUMO

Engineering glycoside hydrolases is a major route to obtaining catalysts forming glycosidic bonds. Glycosynthases, thioglycoligases, and transglycosylases represent the main strategies, each having advantages and drawbacks. Here, we show that an engineered enzyme from the GH84 family, the acid-base mutant TtOGA-D120N, is an efficient O-, N-, and S-glycoligase, able to use Ssp3, Osp3, Nsp2, and Nsp nucleophiles. Moreover, TtOGA-D120N catalyzes the formation and release of N-acetyl-d-glucosamine 1,2-oxazoline, the intermediate of hexosaminidases displaying substrate-assisted catalysis. This release of an activated intermediate allows cascade synthesis by combination with transglycosylases or glycosynthases, here exemplified by synthesis of the human milk oligosaccharide lacto-N-triose II.


Assuntos
Hexosaminidases , beta-N-Acetil-Hexosaminidases , Humanos , Glicosilação , beta-N-Acetil-Hexosaminidases/química , beta-N-Acetil-Hexosaminidases/metabolismo , Glicosiltransferases , Glicosídeo Hidrolases/metabolismo
8.
Chemistry ; 29(44): e202300982, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37217457

RESUMO

Glycoside hydrolases (GHs) are a class of enzymes with emerging roles in a range of disease. Selective GH inhibitors are sought to better understand their functions and assess the therapeutic potential of modulating their activities. Iminosugars are a promising class of GH inhibitors but typically lack the selectivity required to accurately perturb biological systems. Here, we describe a concise synthesis of iminosugar inhibitors of N-acetyl-α-galactosaminidase (α-NAGAL), the GH responsible for cleaving terminal α-N-acetylgalactosamine residues from glycoproteins and other glycoconjugates. Starting from non-carbohydrate precursors, this modular synthesis supported the identification of a potent (490 nM) and α-NAGAL selective (∼200-fold) guanidino-containing derivative DGJNGuan. To illustrate the cellular activity of this new inhibitor, we developed a quantitative fluorescence image-based method to measure levels of the Tn-antigen, a cellular glycoprotein substrate of α-NAGAL. Using this assay, we show that DGJNGuan exhibits excellent inhibition of α-NAGAL within cells using patient derived fibroblasts (EC50 =150 nM). Moreover, in vitro and in cell assays to assess levels of lysosomal ß-hexosaminidase substrate ganglioside GM2 show that DGJNGuan is selective whereas DGJNAc exhibits off-target inhibition both in vitro and within cells. DGJNGuan is a readily produced and selective tool compound that should prove useful for investigating the physiological roles of α-NAGAL.


Assuntos
Hexosaminidases , beta-N-Acetil-Hexosaminidases , Humanos , alfa-N-Acetilgalactosaminidase/química , Lisossomos , Glicoconjugados , Glicoproteínas
9.
Biomolecules ; 13(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979371

RESUMO

Chitotriosidase is an enzyme produced and secreted in large amounts by activated macrophages, especially macrophages loaded with phagocytozed glycosphingolipid in Gaucher disease. Macrophages phagocytose decayed blood cells that contain a lot of sphingolipid-rich cell membranes. In Gaucher disease, due to a deficit in beta-glucocerebrosidase activity, the phagocytozed substrate glucocerebroside cannot undergo further catabolism. In such a situation, macrophages secrete chitotriosidase in proportion to the degree of overload. Gaucher disease (GD) is a recessively inherited disorder resulting in storage of glucosylceramide (GlcCer) in lysosomes of tissue macrophages. It is directly caused by the deficiency of beta-glucocerebrosidase (GBA) activity. Chitotriosidase has been measured systematically each year in the same group of 49 patients with type 1 and 3 GD for over 20 years. Our analysis showed that chitotriosidase is very sensitive biomarker to enzyme replacement therapy (ERT). The response to treatment introduction is of an almost immediate nature, lowering pathologically high chitotriosidase levels by a factor of 2 in a time scale of 8 months, on average. Long term enzyme replacement therapy (ERT) brings chitotriosidase activity close to reference values. Finally, reducing the dose of ERT quickly boosts chitotriosidase activity, but restoring the initial dose of treatment brings chitotriosidase level of activity back onto the decreasing time trajectory.


Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/metabolismo , Glucosilceramidase , Estudos Longitudinais , Hexosaminidases/metabolismo , Hexosaminidases/uso terapêutico , Glucosilceramidas/metabolismo , Glucosilceramidas/uso terapêutico
10.
Artigo em Inglês | MEDLINE | ID: mdl-36834108

RESUMO

Dietary supplementation of gamma-linolenic acid (GLA) in the form of a commercial drug neoglandin (containing GLA and vitamin E), in people following alcohol abuse allows bypassing of the ineffective delta-6-desaturase system involved in the transformation of linoleic acid into GLA. Determination of the activity of N-acetyl-ß-D-hexosaminidase (HEX) in the serum and urine reflects neoglandin action on the catabolism of glycoconjugates and the functioning of liver and kidneys in people following alcohol abuse. MATERIAL AND METHODS: The serum and urine were collected from men with alcohol dependence, treated (n = 31, age 33.16 ± 9.72 years) and not treated (n = 50, age 35.46 ± 11.37 years) with neoglandin. HEX activity were assayed in the supernatants by the colorimetric method, with the p-nitrophenyl derivative of sugar as substrate. RESULTS: Our study on alcoholic men not treated with neoglandin indicates a significantly higher concentration of the serum and urinary HEX activity (nKat/L) on day 1 compared to days 7, 10, 14 and 30 (p < 0.001). For days 14 and 30 (p < 0.01), the urinary HEX activity was expressed in µKat/kgCr. No significant differences were observed in the activity of serum (nKat/L) and urinary (nKat/L and µKat/kgCr) HEX in alcoholics during treatment with neoglandin compared to day 1 of neoglandin treatment. We found significantly different (p < 0.05) concentration of HEX activity (nKat/L) in serum of alcohol-dependent men treated with neoglandin compared to those not taking neoglandin on days 7, 10, 14 and 30 of treatment. The urinary concentration of HEX activity (nKat/L) on days 1, 4, 10 and 30 and HEX activity in µKat/kgCr on days 1, 4 and 7 it was significantly higher (p < 0.05) during the treatment of alcohol-dependence without the use of neoglandin as compared to alcoholics treated with neoglandin. We found a positive correlation between the amount of alcohol consumed and the urinary activity of HEX in the early phase after alcohol withdrawal and a lack of correlation between the HEX activity in serum and urine of alcohol-dependent men not treated with neoglandin. CONCLUSIONS: Neoglandin supplementation in alcoholic men significantly slows down the catabolism of glycoconjugates, thus reducing the effects of ethanol poisoning that are harmful to the kidneys. Neoglandin reduces the harmful effects of ethanol poisoning more on the kidneys than on the liver. The activity of HEX in the serum may be used in monitoring the treatment of alcoholism and whether alcohol reuse occurred during the therapy. In the early stages of alcohol withdrawal, urinary HEX activity can be used as a marker of the amount of alcohol consumed during previous alcohol abuse.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Masculino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Hexosaminidases , beta-N-Acetil-Hexosaminidases/urina , Etanol
11.
J Biol Chem ; 299(4): 103053, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813232

RESUMO

Simple organisms are often considered to have simple glycomes, but plentiful paucimannosidic and oligomannosidic glycans overshadow the less abundant N-glycans with highly variable core and antennal modifications; Caenorhabditis elegans is no exception. By use of optimized fractionation and assessing wildtype in comparison to mutant strains lacking either the HEX-4 or HEX-5 ß-N-acetylgalactosaminidases, we conclude that the model nematode has a total N-glycomic potential of 300 verified isomers. Three pools of glycans were analyzed for each strain: either PNGase F released and eluted from a reversed-phase C18 resin with either water or 15% methanol or PNGase Ar released. While the water-eluted fractions were dominated by typical paucimannosidic and oligomannosidic glycans and the PNGase Ar-released pools by glycans with various core modifications, the methanol-eluted fractions contained a huge range of phosphorylcholine-modified structures with up to three antennae, sometimes with four N-acetylhexosamine residues in series. There were no major differences between the C. elegans wildtype and hex-5 mutant strains, but the hex-4 mutant strains displayed altered sets of methanol-eluted and PNGase Ar-released pools. In keeping with the specificity of HEX-4, there were more glycans capped with N-acetylgalactosamine in the hex-4 mutants, as compared with isomeric chito-oligomer motifs in the wildtype. Considering that fluorescence microscopy showed that a HEX-4::enhanced GFP fusion protein colocalizes with a Golgi tracker, we conclude that HEX-4 plays a significant role in late-stage Golgi processing of N-glycans in C. elegans. Furthermore, finding more "parasite-like" structures in the model worm may facilitate discovery of glycan-processing enzymes occurring in other nematodes.


Assuntos
Caenorhabditis elegans , beta-N-Acetil-Hexosaminidases , Animais , Acetilgalactosamina/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Caenorhabditis elegans/metabolismo , Glicosilação , Hexosaminidases/metabolismo , Metanol , Polissacarídeos/metabolismo
12.
Infect Immun ; 91(2): e0050022, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36715551

RESUMO

The peptidoglycan of Staphylococcus aureus is a critical cell envelope constituent and virulence factor that subverts host immune defenses and provides protection against environmental stressors. Peptidoglycan chains of the S. aureus cell wall are processed to characteristically short lengths by the glucosaminidase SagB. It is well established that peptidoglycan is an important pathogen-associated molecular pattern (PAMP) that is recognized by the host innate immune system and promotes production of proinflammatory cytokines, including interleukin-1ß (IL-1ß). However, how bacterial processing of peptidoglycan drives IL-1ß production is comparatively unexplored. Here, we tested the involvement of staphylococcal glucosaminidases in shaping innate immune responses and identified SagB as a mediator of IL-1ß production. A ΔsagB mutant fails to promote IL-1ß production by macrophages and dendritic cells, and processing of peptidoglycan by SagB is essential for this response. SagB-dependent IL-1ß production by macrophages is independent of canonical pattern recognition receptor engagement and NLRP3 inflammasome-mediated caspase activity. Instead, treatment of macrophages with heat-killed cells from a ΔsagB mutant leads to reduced caspase-independent cleavage of pro-IL-1ß, resulting in accumulation of the pro form in the macrophage cytosol. Furthermore, SagB is required for virulence in systemic infection and promotes IL-1ß production in a skin and soft tissue infection model. Taken together, our results suggest that the length of S. aureus cell wall glycan chains can drive IL-1ß production by innate immune cells through a previously undescribed mechanism related to IL-1ß maturation.


Assuntos
Peptidoglicano , Staphylococcus aureus , Hexosaminidases , Inflamassomos , Interleucina-1beta , Caspases , Parede Celular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Caspase 1
13.
Chemistry ; 29(6): e202202991, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36256497

RESUMO

Soluble fragments of peptidoglycan called muropeptides are released from the cell wall of bacteria as part of their metabolism or as a result of biological stresses. These compounds trigger immune responses in mammals and plants. In bacteria, they play a major role in the induction of antibiotic resistance. The development of efficient methods to produce muropeptides is, therefore, desirable both to address their mechanism of action and to design new antibacterial and immunostimulant agents. Herein, we engineered the peptidoglycan recycling pathway of Escherichia coli to produce N-acetyl-ß-D-glucosaminyl-(1→4)-1,6-anhydro-N-acetyl-ß-D-muramic acid (GlcNAc-anhMurNAc), a common precursor of Gram-negative and Gram-positive muropeptides. Inactivation of the hexosaminidase nagZ gene allowed the efficient production of this key disaccharide, providing access to Gram-positive muropeptides through subsequent chemical peptide conjugation. E. coli strains deficient in both NagZ hexosaminidase and amidase activities further enabled the in vivo production of Gram-negative muropeptides containing meso-diaminopimelic acid, a rarely available amino acid.


Assuntos
Escherichia coli , Peptidoglicano , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Bactérias/metabolismo , Parede Celular/metabolismo , Hexosaminidases
14.
Front Endocrinol (Lausanne) ; 13: 960835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237185

RESUMO

Objective: To investigate the effects and mechanism of hyperinsulinemia on the metabolic switch to ß-hydroxybutyrate (BHB) absorption and utilization under a starvation or hypoxic environment in proximal tubular epithelial cells. Methods: A high-fat diet-induced hyperinsulinemia model in ZDF rats was used to test the expression of key enzymes/proteins of ketone body metabolism in the kidney. Notably, 12-week-old renal tubule SMCT1 specific knockout mice (SMCT1 flox/floxCre+) and control mice (SMCT1 flox/floxCre-) were used to confirm the roles of SMCT1 in kidney protection under starvation. The changes of key enzymes/proteins of energy metabolism, mitochondrial function, and albumin endocytosis in HK2 cells under low glucose/hypoxic environments with or without 50 ng/mL insulin were studied. Silent information regulation 2 homolog 3 (SIRT3) was overexpressed to evaluate the effect of hyperinsulinemia on the metabolic switch to BHB absorption and utilization through the SIRT3/SMCT1 pathway in HK2 cells. Results: In ZDF rats, the expression of HMGCS2 increased, the SMCT1 expression decreased, while SCOT remained unchanged. In renal tubule SMCT1 gene-specific knockout mice, starvation for 48 h induced an increase in the levels of urine retinol-binding protein, N-acetyl-ß-glucosaminidase, and transferrin, which reflected tubular damages. In HK2 cells under an environment of starvation and hypoxia, the levels of key enzymes related to fatty acid oxidation and ketone body metabolism were increased, whereas glucose glycolysis did not change. The addition of 2 mmol/l BHB improved ATP production, mitochondrial biosynthesis, and endocytic albumin function, while cell apoptosis was reduced in HK2 cells. The addition of 50 ng/ml insulin resulted in the decreased expression of SMCT1 along with an impaired mitochondrial function, decreased ATP production, and increased apoptosis. The overexpression of SIRT3 or SMCT1 reversed these alterations induced by a high level of insulin both in low-glucose and hypoxic environments. Conclusions: The increased absorption and utilization of BHB is part of the metabolic flexibility of renal tubular epithelial cells under starvation and hypoxic environments, which exhibits a protective effect on renal tubular epithelial cells by improving the mitochondrial function and cell survival. Moreover, hyperinsulinemia inhibits the absorption of BHB through the inhibition of the SIRT3/SMCT1 pathway.


Assuntos
Hiperinsulinismo , Sirtuína 3 , Inanição , Ácido 3-Hidroxibutírico , Trifosfato de Adenosina , Albuminas/metabolismo , Animais , Células Epiteliais/metabolismo , Glucose/metabolismo , Hexosaminidases/metabolismo , Insulina/metabolismo , Corpos Cetônicos , Camundongos , Camundongos Knockout , Ratos , Proteínas de Ligação ao Retinol , Sirtuína 3/metabolismo , Transferrinas
15.
Comput Math Methods Med ; 2022: 8211389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213585

RESUMO

Objective: A case-control study was conducted to determine the effectiveness of laparoscopic surgery and traditional open surgery on stone clearance, laboratory indexes, and life quality in patients with renal calculi. Methods: During March 2017 to March 2022, 272 patients with complex renal calculi (CRC) cured in our hospital were assigned into control group (n = 136) and research group (n = 136) arbitrarily. The former accepted traditional open surgery, while the latter accepted laparoscopic surgery. The operation time, intraoperative blood loss, hospital stay, and time of getting out of bed were compared. The degree of postoperative incision pain was assessed by visual analogue scale (VAS). The life quality was assessed by the Comprehensive Assessment Questionnaire-74 (GQOL-74). The indexes of renal function and urine metabolism were measured. Then, the postoperative stone clearance rate and complications were calculated. Results: Operation time, blood loss intraoperatively, time out of bed, and hospitalization were all remarkably reduced in the research group, and the difference was statistically significant (P < 0.05). The complete stone clearance rates in study and control cohorts were 75.73% and 63.24%, respectively. The VAS scores were lessened after the operation. Compared with the two groups, the VAS scores of the research group were remarkably lower at 1 to 2 weeks and 1 and 3 months after the operation, and the difference was statistically significant (P < 0.05). One week after operation, the levels of ß 2-microglobulin (ß 2-MG), N-acetyl-ß-glucosaminidase (NAG), and renal injury molecule-1 (kidney injury molecule-1, Kim-1) in the research group were remarkably lower. The levels of urinary ß 2-MG, NAG, and KIM-1 in the research group were remarkably lower, and the difference was statistically significant (P < 0.05). One week after operation, the levels of urinary oxalic acid, uric acid, and urinary calcium lessened averagely. The levels of urinary oxalic acid, uric acid, and urinary calcium in the research group were lower, and the difference was statistically significant (P < 0.05). The quality-of-life scores were compared. One week after the operation, the scores of physical function, psychological function, social function, and material function were all augmented, and the difference was statistically significant (P < 0.05). The incidence of complications was 9.56% and 2.21%, respectively. The incidence of complications in the research group was lower, and the difference was statistically significant (P < 0.05). Conclusion: Laparoscopic surgery is successful when treating CRC, which is superior to invasive surgery in postoperative complications, stone clearance rate, improvement of postoperative renal function, and life quality. It is one of the ideal treatment methods for CRC. However, the role of open surgery when treating CRC cannot be ignored. This needs to be further confirmed by large samples of randomized controlled trials.


Assuntos
Cálculos Renais , Laparoscopia , Cálcio , Estudos de Casos e Controles , Hexosaminidases , Humanos , Cálculos Renais/cirurgia , Laparoscopia/efeitos adversos , Ácido Oxálico , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento , Ácido Úrico , Microglobulina beta-2
16.
Ann Clin Transl Neurol ; 9(11): 1807-1812, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36271674

RESUMO

Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) leads to rapidly progressive dementia and is caused by mutations in the gene CSF1R. Neurodegeneration is driven by dysfunction of microglia, the predominant cell type expressing CSF1R in the brain. We assessed chitotriosidase, an enzyme secreted by microglia, in serum and cerebrospinal fluid of patients with ALSP. Chitotriosidase activity was highly increased in cerebrospinal fluid of patients and correlated inversely with disease duration. Of interest, presymptomatic CSF1R mutation carriers did not show elevated chitotriosidase levels. This makes chitotriosidase a promising new biomarker of disease activity for this rare disease.


Assuntos
Leucoencefalopatias , Adulto , Humanos , Leucoencefalopatias/genética , Neuroglia , Hexosaminidases , Biomarcadores
17.
Anal Chem ; 94(39): 13413-13421, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137196

RESUMO

Cell death plays a vital role in body development, maintenance of tissue function, and homeostasis. Accurate evaluation of cell death types is of great importance for pharmacological and pathological research. However, there is a lack of efficient fluorescent probes to discriminate various cell states. Here, we design and synthesize a novel activatable fluorescent probe PNE-Lyso to detect intracellular pH and hexosaminidases with two kinds of fluorescence signals. PNE-Lyso could distinguish dead cells from healthy cells based on a dual-color mode by targeting the lysosome and evaluating lysosomal hexosaminidase activity. Significantly, PNE-Lyso could also discriminate apoptotic and necrotic cells through visualizing lysosome morphology that is adjusted by the integrity of the lysosome membrane. Moreover, probe PNE-Lyso was successfully applied to investigate the drug-induced cell death process. To the best of our knowledge, this work is the first time cell death types have been distinguished based on a single fluorescent probe.


Assuntos
Corantes Fluorescentes , Lisossomos , Morte Celular , Corantes Fluorescentes/metabolismo , Hexosaminidases/metabolismo , Lisossomos/metabolismo , Microscopia de Fluorescência
18.
Environ Res ; 215(Pt 3): 114363, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36174759

RESUMO

Glyphosate (N-(phosphonomethyl)glycine) is broad-spectrum herbicide that is extensively used worldwide, but its effects on the soil microbiome are inconsistent. To provide a sound scientific basis for herbicide re-review and registration decisions, we conducted a four-year (2013-2016) study in which we consecutively applied glyphosate to a wheat (Triticum aestivum L.)-field pea (Pisum sativum L.)-canola (Brassica napus L.)-wheat crop rotation at five sites in the Canadian prairies. The glyphosate rates were 0, 1, 2, 4 and 8 kg ae ha-1, applied pre-seeding and post-harvest every year. The wheat rhizosphere was sampled in the final year of the study and analysed for microbial biomass C (MBC), the composition and diversity of the microbiome, and activities of ß-glucosidase, N-acetyl-ß-glucosiminidase, acid phosphomonoesterase and arylsulphatase. Glyphosate did not affect MBC, the composition and diversity of prokaryotes and fungi, and the activities of three of the four enzymes measured in the wheat rhizosphere. The one effect of glyphosate was a wave-like response of N-acetyl-ß-glucosaminidase activity with increasing application rates. The experimental sites had much greater effects, driven by soil pH and organic C, on the soil microbiome composition and enzyme activities than glyphosate. Soil pH was positively correlated with the relative abundance of Acidobacteriota but negatively correlated with that of Actinobacteriota and Basidiomycota. Soil organic C was positively correlated with the relative abundances of Proteobacteriota and Verrucomicrobiota, but negatively correlated with the relative abundance of Crenachaeota. The activity of acid phosphomonoesterase declined with increasing relative abundance of Acidobacteriota, but increased with that of Actinobacteriota and Basidiomycota. The activity of N-acetyl-ß-glucosaminidase also increased with increasing relative abundance of Actinobacteriota but decreased with that of Mortierellomycota. ß-glucosidase activity also decreased with increasing relative abundance of Mortierellomycota. The core fungal species observed in at least 90% of the samples were Humicola nigrescens, Gibberella tricincta and Giberella fujikuroi. Therefore, this multi-site study on the Canadian prairies revealed no significant effects of 4-year applications of glyphosate applied at different rates on most soil microbial properties despite differences in the properties among sites. However, it is important to keep evaluating glyphosate effects on the soil microbiome and its functioning because it is the most widely used herbicide worldwide.


Assuntos
Celulases , Herbicidas , Microbiota , Arilsulfatases/farmacologia , Bactérias , Canadá , Celulases/farmacologia , Glicina/análogos & derivados , Herbicidas/toxicidade , Hexosaminidases/farmacologia , Monoéster Fosfórico Hidrolases/farmacologia , Rizosfera , Solo/química , Microbiologia do Solo , Triticum
19.
Front Immunol ; 13: 949516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052089

RESUMO

Human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is an inflammatory neurodegenerative disease that affects motor, urinary, intestinal, and sensory functions. Typically, HAM/TSP is slowly progressive, but it may vary from limited motor disability after decades (very slow progression) to loss of motor function in a few years from disease onset (rapid). In this study, we aimed to identify prognostic biomarkers for HAM/TSP to support patient management. Thus, proteomic analysis of the cerebrospinal fluid (CSF) was performed with samples from HTLV-1 asymptomatic carriers (AC) (n=13) and HAM/TSP patients (n=21) with rapid, typical, and very slow progression using quantitative label-free liquid chromatography/tandem mass spectrometry. Enrichment analyses were also carried out to identify key biological processes associated with distinct neurological conditions in HTLV-1 infection. Candidate biomarkers were validated by ELISA in paired CSF and serum samples, and samples from HTLV-1-seronegative individuals (n=9) were used as controls. CSF analysis identified 602 proteins. Leukocyte/cell activation, immune response processes and neurodegeneration pathways were enriched in rapid progressors. Conversely, HTLV-1 AC and HAM/TSP patients with typical and very slow progression had enriched processes for nervous system development. Differential expression analysis showed that soluble vascular cell adhesion molecule 1 (sVCAM-1), chitotriosidase 1 (CHIT1), and cathepsin C (CTSC) were upregulated in HAM/TSP. However, only CHIT1 was significantly elevated after validation, particularly in HAM/TSP rapid progressors. In contrast, none of these biomarkers were altered in serum. Additionally, CSF CHIT1 levels in HAM/TSP patients positively correlated with the speed of HAM/TSP progression, defined as points in the IPEC-2 HAM/TSP disability scale per year of disease, and with CSF levels of phosphorylated neurofilament heavy chain, neopterin, CXCL5, CXCL10, and CXCL11. In conclusion, higher CSF levels of CHIT1 were associated with HAM/TSP rapid progression and correlated with other biomarkers of neuroinflammation and neurodegeneration. Therefore, we propose CHIT1 as an additional or alternative CSF biomarker to identify HAM/TSP patients with a worse prognosis.


Assuntos
Pessoas com Deficiência , Vírus Linfotrópico T Tipo 1 Humano , Transtornos Motores , Doenças Neurodegenerativas , Paraparesia Espástica Tropical , Biomarcadores , Hexosaminidases , Humanos , Paraparesia Espástica Tropical/diagnóstico , Proteômica
20.
Front Cell Infect Microbiol ; 12: 876898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923804

RESUMO

Staphylococcus aureus osteomyelitis remains a very challenging condition; recent clinical studies have shown infection control rates following surgery/antibiotics to be ~60%. Additionally, prior efforts to produce an effective S. aureus vaccine have failed, in part due to lack of knowledge of protective immunity. Previously, we demonstrated that anti-glucosaminidase (Gmd) antibodies are protective in animal models but found that only 6.7% of culture-confirmed S. aureus osteomyelitis patients in the AO Clinical Priority Program (AO-CPP) Registry had basal serum levels (>10 ng/ml) of anti-Gmd at the time of surgery (baseline). We identified a small subset of patients with high levels of anti-Gmd antibodies and adverse outcomes following surgery, not explained by Ig class switching to non-functional isotypes. Here, we aimed to test the hypothesis that clinical cure following surgery is associated with anti-Gmd neutralizing antibodies in serum. Therefore, we first optimized an in vitro assay that quantifies recombinant Gmd lysis of the M. luteus cell wall and used it to demonstrate the 50% neutralizing concentration (NC50) of a humanized anti-Gmd mAb (TPH-101) to be ~15.6 µg/ml. We also demonstrated that human serum deficient in anti-Gmd antibodies can be complemented by TPH-101 to achieve the same dose-dependent Gmd neutralizing activity as purified TPH-101. Finally, we assessed the anti-Gmd physical titer and neutralizing activity in sera from 11 patients in the AO-CPP Registry, who were characterized into four groups post-hoc. Group 1 patients (n=3) had high anti-Gmd physical and neutralizing titers at baseline that decreased with clinical cure of the infection over time. Group 2 patients (n=3) had undetectable anti-Gmd antibodies throughout the study and adverse outcomes. Group 3 (n=3) had high titers +/- neutralizing anti-Gmd at baseline with adverse outcomes. Group 4 (n=2) had low titers of non-neutralizing anti-Gmd at baseline with delayed high titers and adverse outcomes. Collectively, these findings demonstrate that both neutralizing and non-neutralizing anti-Gmd antibodies exist in S. aureus osteomyelitis patients and that screening for these antibodies could have a value for identifying patients in need of passive immunization prior to surgery. Future prospective studies to test the prognostic value of anti-Gmd antibodies to assess the potential of passive immunization with TPH-101 are warranted.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Animais , Anticorpos Neutralizantes , Hexosaminidases , Humanos , Projetos Piloto , Estudos Prospectivos , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...